Apprentices honing their skills of cutting through concrete during a newly created course: DISTRIBUTION WORKER

You have just been Patronized
by a Member of the
Laborers’ International Union of North America

I am a Union Worker...I Spend Union wages
Without the benefits of my Union this purchase might not have been possible. My Union negotiates fair wages, because low wages never brought prosperity to anybody. Many other Union members are also your customers.
If we’re doing OK, you’re doing OK.

Think about it ... Unions Support Our Community!
The following information was taken from OSHA’s website, with a couple of points borrowed from ISHN magazine, and Environmental Health and Safety magazine.

Types of Protective Gloves

There are many types of gloves available today to protect against a wide variety of hazards. The nature of the hazard and the operation involved will affect the selection of gloves. The variety of potential occupational hand injuries makes selecting the right pair of gloves challenging. It is essential that employees use gloves specifically designed for the hazards and tasks found in their workplace because gloves designed for one function may not protect against a different function even though they may appear to be an appropriate protective device.

The following are examples of some factors that may influence the selection of protective gloves for a workplace:

- Type of chemicals handled.
- Nature of contact (total immersion, splash, etc.)
- How toxic is the material if absorbed through the skin?
- Duration of contact.
- Area requiring protection (hand only, forearm, arm, etc.)
- How the glove will be used?
- Grip requirements (dry, wet, oily, etc.)
- Thermal protection.
- Size and comfort.
- Abrasion/resistance requirements.

Gloves made from a wide variety of materials are designed for many types of workplace hazards. In general, gloves fall into four groups:

- Gloves made of leather, canvas or metal mesh;
- Fabric and coated fabric gloves;
- Chemical-and liquid-resistant gloves;
- Insulating rubber gloves.
Leather, Canvas or Metal Mesh Gloves

Sturdy gloves made from metal mesh, leather or canvas; provide protection against cuts and burns. Leather or canvas gloves also protect against sustained heat.

- **Leather gloves** protect against sparks, moderate heat, blows, chips and rough objects.
- **Aluminized gloves** provide reflective and insulating protection against heat and require an insert made of synthetic materials to protect against heat and cold.
- **Aramid fiber gloves** protect against heat and cold, are cut-and abrasive-resistant and wear well.
- **Synthetic gloves** of various materials offer protection against heat and cold are cut-and abrasive-resistant and may withstand some diluted acids. These materials do not stand up against alkalis and solvents.

Fabric and Coated Fabric Gloves

Fabric and coated fabric gloves are made of cotton or other fabric to provide varying degrees of protection.

- **Fabric gloves** protect against dirt, slivers, chafing and abrasions. They do not provide sufficient protection for use with rough, sharp or heavy materials. Adding a plastic coating will strengthen some fabric gloves.

- **Coated fabric gloves** are normally made from cotton flannel with napping on one side. By coating the un-napped side with plastic, fabric gloves are transformed into general-purpose hand protection offering slip-resistant qualities. These gloves are used for tasks ranging from handling bricks and wire to chemical laboratory containers. When selecting gloves to protect against chemical exposure hazards, always check with the manufacturer or review the manufacturer’s product literature to determine the gloves’ effectiveness against specific workplace chemicals and conditions.
Chemical-and Liquid-Resistant Gloves

Chemical-resistant gloves are made with different kinds of rubber:

- Natural (Latex)
- Butyl
- Neoprene
- Nitrile (Buna, NBR)
- Fluorocarbon (Viton)

Or various kinds of plastic:

- Poly Vinyl Chloride (PVC)
- Poly Vinyl Alcohol (PVA)
- Poly Ethylene (PE)

These materials can be blended or laminated for better performance. As a general rule, the thicker the glove material, the greater the chemical resistance but thick gloves may impair grip and dexterity having a negative impact on safety.

Some examples of chemical-resistant gloves include:

- **Butyl gloves** are made of a synthetic rubber and protect against a wide variety of chemicals, such as peroxide, rocket fuels, highly corrosive acids (citric acid, sulfuric acid, hydrofluoric acid and red-fuming citric acid), strong bases, alcohols, aldehydes, ketones, esters and nitro compounds.

 Butyl gloves also resist oxidation, ozone corrosion and abrasion, and remain flexible at low temperatures. Butyl rubber does not perform well with aliphatic and aromatic hydrocarbons and halogenated solvents.

- **Natural rubber (latex) gloves** are comfortable to wear, which makes them a popular general-purpose glove. They feature outstanding tensile strength, elasticity and temperature resistance. In addition to resisting abrasions caused by grinding and polishing, these gloves protect workers’ hands from most water solutions of acids, alkalis, salts and ketones. Latex gloves have caused allergic reactions in some individuals and may not be appropriate for all employees. Hypoallergenic gloves, glove liners and powderless gloves are possible alternatives for workers who are allergic to latex gloves.

- **Neoprene gloves** are made of synthetic rubber and offer good pliability, finger dexterity, high density and tear resistance. They protect against hydraulic fluids, gasoline, alcohols, organics acids and alkalis. They generally have chemical and wear resistance properties superior to those made of natural rubber.

- **Nitrile gloves** are made of a copolymer and provide protection from chlorinated solvents such as trichloroethylene and perchloroethylene. Although intended for jobs requiring dexterity and sensitivity, nitrile gloves stand up to heavy use even after prolonged exposure to substances that cause other gloves to deteriorate. They offer protection when working with oils, greases, acids, caustics and alcohols but are generally not recommended for use with strong oxidizing agents, aromatic solvents, ketones and acetates.

Continued on page 5
Care of Protective Gloves

Protective gloves should be inspected before each use to ensure that they are not torn, punctured or made ineffective in any way. A visual inspection will help detect cuts or tears but a more thorough inspection by filling the gloves with water and tightly rolling the cuff towards the fingers will help reveal any pinhole leaks. Gloves that are discolored or stiff may also indicate deficiencies cause by excessive use or degradation from chemical exposure.

Any gloves with impaired protective ability should be discarded and replaced. Reuse of chemical-resistant gloves should be evaluated carefully, taking into consideration the absorptive qualities of the gloves. A decision to reuse chemically-exposed gloves should take into consideration the toxicity of the chemicals involved and factors such as duration of exposure, storage and temperature.

Conclusion

There are three fundamental challenges that are consistent whenever and wherever workers are required to wear gloves. Workers want comfort, performance, and protection from any PPE, but even more so from their gloves. When a person is required to use their hands to perform a task, they will ultimately get frustrated and aggravated if they have trouble performing that task because of the fit or comfort of their gloves.

When it comes to selecting the proper chemical protective gloves, consult the SDS for the particular chemical and it will provide you with the necessary information to pick the right type of gloves.

As always, be careful!
TEST YOUR KNOWLEDGE !!!

What do you know about SCAFFOLDS

SUBPART L

OSHA 1926 rules and regulations pertaining to SCAFFOLDS

1) "Each scaffold and scaffold component must support its weight and _____ the maximum intended load applied to it."
2) "Each platform unit shall be installed so that the space between adjacent units and the space between the platform and the uprights is no more than _____ wide."
3) A platform used solely for walkways or for erecting or dismantling scaffolds shall be at least _____.
4) Each ladder jack scaffold shall be at least _____ wide.
5) The front edge of all platforms cannot be more than _____ from the face of the work unless a guardrail is used.
6) The maximum distance from the face of the work for outrigger scaffolds shall be _____.
7) Each end of a platform unless cleated or otherwise restrained, shall extended over the centerline of its supports at least _____.
8) On scaffolds where, platforms are overlapped to create a long platform, the lap must be _____.
9) Supported scaffolds with a height to base width ratio of _____:1 shall be restrained from tipping.
10) Hook-on and attachable ladders shall be positioned so that the bottom rung is no more than _____ above the scaffold supporting level.

HERE ARE YOUR CHOICES FOR ANSWERS

<table>
<thead>
<tr>
<th>A) 4 TIMES</th>
<th>B) 1"</th>
<th>C) 18"</th>
<th>D) 12"</th>
<th>E) 14"</th>
</tr>
</thead>
<tbody>
<tr>
<td>F) 3"</td>
<td>G) 6"</td>
<td>H) AT LEAST 12"</td>
<td>I) 4</td>
<td>J) 24"</td>
</tr>
<tr>
<td>K) 11 1/2"</td>
<td>L) 16 3/4"</td>
<td>M) 9 1/2"</td>
<td>N) 38"</td>
<td>O) 45"</td>
</tr>
<tr>
<td>P) 60</td>
<td>Q) 10</td>
<td>R) 20</td>
<td>S) 48</td>
<td>T) 5</td>
</tr>
</tbody>
</table>

ANSWERS: 1) P; 2) H; 3) D; 4) K; 5) N; 6) G; 7) T; 8) B; 9) A; 10) O
TEST YOUR KNOWLEDGE !!!

What do you know about **SCAFFOLDS**

SUBPART L

OSHA 1926 rules and regulations pertaining to **SCAFFOLDS**

11) Hook-on and attachable ladders shall have a minimum rung length of ____.

12) Hook-on and attachable ladders shall have a maximum rung spacing of ____.

13) Where the employer can demonstrate that a wider gap is necessary in platform construction, the maximum space between the platform and the uprights shall be ____.

14) The minimum height of the guardrail top-rail for supported scaffolds shall be ____.

15) The maximum height of the guardrail top-rail for supported scaffolds is ____.

16) "Scaffold platforms shall not deflect more than 1/____th of the span when loaded."

17) "Each employee on a scaffold more than _____ feet above a lower level shall be protected from falling."

18) "Cross bracing is acceptable in place of a mid-rail when the cross point of the two braces is between _____ inches and 30 inches above the work platform."

19) "Cross bracing is acceptable in place of a top-rail when the crossing point of the two braces is between 38" and ____ inches above the work platform."

20) Concerning Mobile scaffolds, "Manual force used to move the scaffold shall be applied as close to the base as practicable, but not more than _____ feet above the supporting surface."

HERE ARE YOUR CHOICES FOR ANSWERS

A) 4 TIMES	B) 1”	C) 18”	D) 12”	E) 14”
F) 3”	G) 6”	H) AT LEAST 12”	I) 4	J) 24”
K) 11 1/2”	L) 16 3/4”	M) 9 1/2”	N) 38”	O) 45”
P) 60	Q) 10	R) 20	S) 48	T) 5

Changes at the
Ohio Laborers’ Training Center

Brine Tank Containment

The Training Center has 2 gas wells that provide the natural gas to run the boilers which provide the heat and hot water for the Training Center. Along with the natural gas that is pumped out of the ground, we also get a certain amount of oil and a saltwater brine solution. This brine solution has to be held in tanks until we can have someone come and haul it away.

This brine solution is stored in Poly tanks. With the location of 2 of these Poly tanks in relation to the new pond that will be built, we felt it would be prudent to build a concrete containment to hold the brine solution in the event that the Poly tanks would spring a leak.

The following pictures show the results of this endeavor.
With the release of OSHA’s new construction confined space standard, we thought it would be good to try to simulate a construction type of confined space. Some of you might remember the concrete trench that is located in “A” lab. We decided to enclose that space with a top over it. The trench had a manhole installed at one end of it. We added a cone to the top of the manhole. We then proceeded to build short knee walls to add to the top of the concrete walls. Then we framed a flat roof on top of these walls, covering the trench. We used the 2x6’s that were removed from the tunnel building roof to frame the knee walls as well as the flat rafters that covered the trench. We then covered the framing with ¾ inch plywood.

A hatch was framed in at the opposite end of the manhole, and a steel ladder that was recycled was added as a way of accessing the space. Lighting was added as well as a permanent ventilation system.
Changes at the
Ohio Laborers’ Training Center

Tunnel Building

The Training Center has had a Tunnel program for many years, and with that a building which has the tunnel entrances in it, as well as an area to prep and work in.

With much deliberation, we decided that the roof needed to be replaced. We decided to sheet the rafters with rough sawn wood which was harvested from the Training Center property and sawn at a local saw mill. With help from some members of Lecet, District Council, and some of the Regional apprentice coordinators, the Instructors proceeded to remove the existing roof in its entirety, framing, beams and all.

The open storage area that was located to the right of the tunnel building was framed in, a new support beam was installed that run the entire length of the building and the storage area, and new 2x10 rafters were placed and secured. Cross bridging was added as well as tie-down straps as part of the framing system. One foot overhangs were framed in, and then the 1 inch thick rough sawn wood was installed as the sheeting. Next came a layer of vapor barrier and then the metal roofing was installed. We went with 32 feet long sheets of roofing to cut down on seams.

Soffit and fascia trim was added and then seamless gutter was installed.
Changes at the
Ohio Laborers’ Training Center

Tunnel Building
Gas Distribution

The Training Center added a 2 week class this year dedicated to the gas distribution industry here in Ohio. With the tremendous amount of work going on in this industry, not to mention the planned work coming up, the training center put together a class that incorporates many of the tasks that people do in the field. In the picture below, we poured a concrete sidewalk as well as curb and gutter. There is a 4 inch hdpe yellow gas line buried approximately 18 inches deep in front of the gutter plate. The students have to pot hole to locate the line, saw cut the concrete sidewalk and curb and gutter.

The concrete is then demolished using pavement breakers and then removed. A shallow trench is then excavated from the main gas line perpendicular across the sidewalk and curb and gutter. The gas main is then cleaned and scraped and a “T” is fused to the main. A 1 inch line is then fused to the “T” and then laid in the ditch. Approximately, 8 feet of the 1 inch line is laid and then at the end of the 1 inch pipe, a riser is installed.

The whole system is then pressurized with air and using pressure gauges which are installed, the system is checked for leaks. Students will then backfill the trench, form and pour concrete to patch the sidewalk and curb and gutter.

Students go through a CDL prep class with the intention of attaining a class A cdl. They prep and place some asphalt, they are taught pipe fusion and go through Veriforce testing for hdpe fusion, and they go through an ATSSA flagging course.
With so many new apprentices coming into our industry, there is a great need for what I call generational knowledge transfer. This is not just mentoring – as in helping someone to succeed. This is the traditional passing down of information that those with the most experience and time served can provide to those on their way up. This includes the tricks of the trade.

It is part sharing, part teaching, part history lesson, and all useful. The obvious payoff is the relational learning curve that the apprentices have to overcome. The less obvious benefit is that it actually improves the jobsite productivity, quality, and long-term success of the union and contractor. It’s not necessary for the next generation to re-invent the wheel.

Knowledge transfer is a conscious effort by those who will be leaving the industry. It is an opportunity to do something really valuable and important with the lifetime of expertise they have accumulated. A twenty-five year career can simply disappear without a trace unless there is some legacy created – one that is passed down deliberately and with sincere intent. It is for those who have the knowledge to be willing. It is for those who want and need the knowledge to be worthy.

Fraternally,
Vincent T. Irvin
Statewide Apprenticeship Coordinator
STUDENT SECTION
PERSONNEL CHANGES

BILL SULLIVAN

Bill joined the staff upon the retirement of long-time Weekend Manager, John Newberry, in August of this year.

Bill is a sixteen year member of the Laborers’ International Union of North America. He joined Laborers’ Local 609, Framingham, Massachusetts in 1999, and transferred to Laborers’ Local 809, Steubenville, in 2006.

We welcome Bill to the Training Center family.

JOHN NEWBERRY

We sadly say our goodbyes to John after 12 years of service to our facility as our Weekend Manager.

John has been a member of Local 639, Marietta since December 1981.

We wish you the best of luck, John, in your future endeavors!